Your browser is unsupported

We recommend using the latest version of IE11, Edge, Chrome, Firefox or Safari.

Photo of Shahbazian-Yassar, Reza

Reza Shahbazian-Yassar, PhD


Department of Mechanical and Industrial Engineering


Building & Room:

260 EIB


929 West Taylor Street, Chicago, IL 60607

Office Phone:


Related Sites:


Research Interests

In Situ Transmission Electron Microscopy

Novel Materials for Energy Storage and Conversion (Li/Na/Zn Batteries)

High Entropy Materials


Selected Publications

In Situ TEM 

K. He et al., Operando Liquid Cell Electron Microscopy of Discharge and Charge Kinetics in Lithium-Oxygen Batteries, Nano Energy, V. 49, July 2018, Pages 338-345.

Y. Yuan et al., Understanding Materials Challenges for Rechargeable ion Batteries and new Chemistries using in situ TEM, Nature Communications 8 (2017):15806. (DOI: 10.1038/ncomms15806).

S. Sharifi-Asl et al., Facet-Dependent Thermal Instability in LiCoO2, Nano Letters, 2017, 17 (4), pp 2165–2171. DOI: 10.1021/acs.nanolett.6b04502.

A. Nie et al., Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO2 Materials, ACS Nano, 7 (2013), 6203–6211.

Y Yao et al., High temperature shockwave stabilized single atoms, Nature Nanotechnology 14 (9), 851-857.

SM Ghodsi, Assessment of Pressure and Density of Confined Water in Graphene Liquid Cells, Advanced Materials Interfaces, Volume7, Issue12, June 23, 2020, 1901727.

B Song, et al. Revealing Sintering Kinetics of MoS2-Supported Metal Nanocatalysts in Atmospheric Gas Environments via Operando Transmission Electron Microscopy, ACS Nano 14 (4), 4074-4086.



Y. Yuan, et al., The Influence of Large Cations on the Electrochemical Properties of Tunnel-Structured Metal Oxides, Nature Communications, 7 (2016), 13374 (DOI: 10.1038/ncomms13374)

M. Cheng et al., Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries, Advanced Materials, Vol. 30, Issue 39, September 26, 2018, pp. 1800615. DOI: adma.201800615.

R. Rojaee et al., Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries, Advanced Functional Materials, V. 30, Issue32, August 7, 2020, 1910749. DOI: 10.1002/adfm.201910749

R. Deivanayagam et al., Composite Polymer Electrolyte for Highly Cyclable Room-Temperature Solid-State Magnesium Batteries, ACS Appl. Energy Mater. 2 (2019), Issue 11, pp. 7980-7990. Publication Date: October 22, 2019.

R. Rojaee, R. Shahbazian-Yassar, Two Dimensional Materials to Address the Lithium Battery Challenges, ACS Nano 2020, 14, 3, 2628-2658, Publication Date: February 21, 2020.

S. Sharifi-Asl et al., Anti-Oxygen Leaking LiCoO2, Advanced Functional Materials, 29 (2019), Issue 23, pp. 1901110.

T. Foroozan et al., Non-Dendritic Zn Electrodeposition Enabled by Zincophilic Graphene Substrates, ACS Appl. Mater. Interfaces 2019, 11, 47, 44077-44089. Publication Date: November 1, 2019.

T. Foroozan et al., Synergistic Effect of Graphene Oxide for Impeding the Dendritic Plating of Li, Advanced Functional Materials, 2018, 28, 1705917. DOI: 10.1002/adfm.201705917


High Entropy Materials

Y. Yao et al., Carbo-Thermal Shock Synthesis of High Entropy Alloy Nanoparticles, Science, 359 (2018), Issue 6383, pp. 1489-1494. DOI: 10.1126/science.aan5412.
S. Gao et al., Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis, Nature Communications 11, 2016 (2020)
Y Yao, High-throughput, combinatorial synthesis of multimetallic nanoclusters, Proceedings of the National Academy of Sciences 2020 117 (12) 6316-6322;
Y Yang et al., Aerosol synthesis of high entropy alloy nanoparticles, Langmuir 2020, 36 (8), 1985-1992.


Ph.D., Materials Science
Washington State University, 2005

Intellectual Property

R Shahbazian-Yassar, T Foroozan, Thin nanocoating separators for batteries, US Patent App. 16/784,491